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ABSTRACT

Let ey
(1) m; (i=1,...,n)
be positive integers pairwise relatively prime. The Chinese Remainder Problem i

is to find a solution x of the n congruences
(2) X = ai(md mi) (i=1,-no,n) . -

where the integers a; are given. From Marcel Riesz I learnt orally that

this problem is an analoque of the problem of finding a polynomial P(x) of
degree n-1 which solves the interpolation problem :
(3) P(xi) = Yi(i=1""'n) (yi given and also distinct x;) .
This is solved by lLagrange's interpolation formula

n .
(4) P(x) = § y;L; (x) -
i=1 o

o e

where L;(x) are the fundamental functions satisfying
Also (2) can be similarly solved by determining the b;(i=1,...,n) satisfying )
the congruences

Theorem 1. A solution of the system (2) is given by

)
- A 8

-~

n
(7) x= ] ajb; .
\ i=1

"_1: n; [y

Besides recording this analogy of Marcel Riesz, the author's contribution
is the following remark: Just as Newton solves the problem (3) successively T
with his formula using successive divided differences, it is convenient to
i solve the system (2) successively obtaining

Theorem 2. The integer e
* (8) X = a1 + d.‘m.‘ + dzm1m2+...+dn_1m1m2...mn_1

is_a solution of (2) if we determine the d;(i=1,...,n-1) successively by the

congruences

b S
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a, + d‘m1 = az(mod m2)
a, + d1m1 + d2m1m2 = a3(mod m3)
(9) .
a, + d1m1+...+dn_1m1...mn_1 = an(mod mn) .

Indeed, from (9) we find that
X = ag tdymqtee.td, _qmompeeem 4 = ap (mod m )

for k = 1’...’n'

AMS (MOS) Subject Classifications: 10A10, 41A05
Key Words: Chinese Remainder Problem, Polynomial Interpolation

Work Unit Number 6 ~ Miscellaneous Topics
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s SIGNIFICANCE AND EXPLANATION

The Chinese Remainder Problem (Ch.R.P) is to find an integer x such

t,‘:$ that
_'.:_\
:‘\.-:': X = ai(md mi) (i="ooo'n) F}
o
:) where m; are pairwise relatively prime moduli and a; are given integers.
(N
4‘,1{. In the 1950's I learnt orally from Marcel Riesz that the CH.R.P. is an
I
}.::3 analogue of the polynomial interpolation problem VR
N .
e P(xi) = Yi(i=1""'n) ¢ P(x) € *n-j [
“ G
A and that the Ch.R.P. can be solved by an analogue of Lagrange's interpolation
;.:-f.:ﬁ formula. The author now adds the remark that the Ch.R.P. can be solved, even
o
' more economically, by an analogue of Newton formula using successive divided
-
);1 differences. .
1w, ! ! )
S f
T~
R
..-'.-
SENL
[
b { Accession For
" | NTIS  GRARL ——714
e DTIC TAB d
o Unso -'munced a
28 | gusnts st ion ———
RN Vo e
# ".-4, [
::-.: ' By _-——
o : 5‘ pistritution/ |
~ +
3 N ailability Codes
Gere &8 : Avel

. iAvell and/or
;Dist. I special

| #) |

P’
S

‘- -
9
At

.'-.‘
Pt
£s'x

o al e
y (' a
L 3
F O 3

ks
4
x

=3

' The responsibility for the wording and views expressed in this descriptive
AL summary lies with MRC, and not with the author of this report.
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THE CHINESE REMAINDER PROBLEM AND POLYNOMIAL INTERPOLATION
I. J. Schoenberg
Let
(1) m; (i=1,...,n) be positive integer s.t. (mi,mj) =1 if 1 #3 .
The Chinese remainder problem is as follows

The_Problem. Given the integers a;(i=1,...,n) we are to find an

interger x satisfying the congruences

(2) x = aj(mod my) , (i=1,...,n) .

[al)

Sometime in the nineteen-fifties Marcel Riesz visited the Universit:
Pennsylvania and told us informally that the problem (2) can be thought o1 1s
an analogue of the problem of finding a polynomial P(x) of degree n-1
solving the interpolation problem
(3) P(xy) = y;(i=1,.04,n), (yy given and also distinct x3) .

This problem is solved by Lagrange's formula

n
(4) P(x) =7 y;Li(x) ,
1

where the fundamental functions L;(x) are defined by
(5) Li(xj) = Gij’ (i,3=1,+...,n) .
Similarly, if we define the integers bi by the congruences
(6) b, = Gij(mod mj) (i,3=1,¢..,n) ,
we have

Theorem 1. A solution of the system (2) is given by

n
(7) x=) a;b; .
1

Indeed, as soon as we have the bi satisfying (6), we easily see that

the integer x satisfies (2). Clearly the integers a; are the analogues of

Spongored by the United States Army under Contract No. DAAG29-80-C-0041.
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the y; of (3), while the integers b; of (6) are the analogues of the
fundamental functions L;(x) of (5).

Our solution of (2) by means of (6) is essentially also the solution as
given in [1, 66-71] and [2, 49-51]) without mentioning the analogy with
Lagrange's formula (4).

Besides recording Riesz's remark, the author's contribution is the
following remark: Newton solves the interpolation prolem (3) successively
using successive divided differences. Applying Newton's idea to the solution
of the congruences (2) we obtain the following procedure:

Determine the integers

(8) di(i = 1,2,-&.,!“1)

so_as to satisfy the n-1 congruences

]

a, + d1m1 = a, (mod mz)

a1 + d1m1 + d2m1m2 z a

(mod m.)
(9) . 3

3

[+
+
Q
e
+

1 1™ d2m1m2+...+dn_1m1m2...mn_1 = a (mod mn) .

Notice he triangular shape of this system: We determine first a value of my,

then m, a.s.f. The d; having been determined we have

Theorem 2. A solution of the system (2) is given by

(10) X =a, + dm, + d2m1m2+...+dn_1m1m2...mn_1 .
Indeed, from (9) we find that
X T ag + dymytecotd _qmymyee oMy 4 = 3y (mod my )
for k= 1,2,...,n, because of the (k=-1)st congruence (9).
Remarks. 1. The seond Newton approach is slightly more economical:
While the Lagrange approach required to find the n integers bi’ the Newton

approach required to determine only n~1 integers di(i=1,2,...,n-1).
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ot 2. The analogy with Newton's solution of (3): The d; of (10)
W correspond to the successive divided differences, and the m; are the

d analogues of the x-x;.
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o
B ( degree n-1 which solves the interpolation problem .
R (3) P(x;) = y;(i=1,...,n) (y; given and also distinct x;) .

~~
::Eu This is solved by Lagrange's interpolation formula
LR

Lo n *
W "o (4) P(x) = X yiLi(x)

' i=1

ey

;;:( where Li(x) are the fundamental functions satisfying

o

v 5 . ) = 8, N

o (5) Ll(xj) 613
AN Also (2) can be similarly solved by determining the bi(i=1,...,n) satisfying
L8 the congruences
y (6) by = Gij(mod mj)

Theorem 1. A solution of the system (2) is given by

n
= (M x = ) ajb; .
L i=1
' Besides recording this analogy of Marcel Riesz, the author's contribution
is the following remark: Just as Newton solves the problem (3) successively
with his formula using successive divided differences, it is convenient to

solve the system (2) successively obtaining

L9 Theorem 2. The integer

LY (8) X = a, + dqumy + dymgmyte..td _mymye.om g
TfL‘ is a solution of (2) if we determine the di(i=1,...,n-1) successively by the
R congruences
ﬁ~, a, + d1m1 E az(mod m2)
a, + d1m1 + d2m1m2 = aa(mod m3)

(9) .

+ d m +...+ oo
a a.m dn_1m1 mo-1

n
o
=/
E]
[¢]
[o])
:5

Indeed, from (9) we find that

X = ay +dqmyt..otd _gMylgye.em g = 3y (mod m, )

for k= 1,...,n.
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